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The title problem, which is an important early element of the mechanism of the 
development of a surface oil flow visualization picture, is studied by a linear stability 
analysis that  predicts the most strongly amplified wavenumber of transverse surface 
waves as a function of Reynolds number, surface tension, film viscosity and initial 
thickness of the film. Wall scaling virtually removes the additional dependence on 
Reynolds number. I n  a simple experiment the observed wavenumber agrees with the 
predicted most strongly amplified value to within the experimental accuracy. 

1. Introduction and aim 
One of the most effective tools in aerodynamics research and development is the 

method known as surface oil flow visualization. In  this technique, a thin film of a 
suspension of finely ground solid particles in a liquid is sprayed onto the model, the 
flow around which is to be investigated. The model is then exposed to  the flow in a 
wind tunnel until the suspension flows under the influence of the forces exerted on 
i t  by the air. Depending on the liquid chosen, the film may eventually dry out, 
leaving the particles behind. During the time in which the film flows, the particles 
arrange themselves in lines which are usually interpreted as being aligned with the 
shear stress that would be exerted on the model in the absence of the film (see e.g. 
L. C. Squire 1961). The method thus supplies a very valuable and immediate picture, 
which transmits the considerable wealth of data contained in the direction field of the 
wall shear stress to the best pattern-recognition device, the human eye. 

An example of such a pattern is shown in figure 1. As can be seen, the pattern is 
not only structured in lines, but other features, such as the density, granularity and 
contrast of the lines, also vary within the pattern. Clearly, any liquid particle travels 
over a considerable fraction of the model length, so that local features of the pattern 
may well depend significantly on the conditions i t  has undergone on the way. 
Nevertheless, i t  is conceivable that local features correlate sufficiently well with 
quantities of interest (such as the magnitude of the wall shear stress) to provide an 
approximate measure of their local value. Hence there exists a practical motivation 
for an understanding of the mechanism of the formation of the pattern. 

There is no a priori reason to  expect line formation at all. I ts  mechanism is 
therefore an interesting fluid mechanical problem in itself, arising from some 
instability of the interaction between the air and liquid flows. I n  order to study it, 
this paper considers a model problem, in which not a suspension, but a pure liquid 
is taken to  wet a flat plate. From a preliminary investigation (Hornung 1985) it 
became clear that the surface tension of the liquid plays a significant role in an early 
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FICIJRE 1 .  Example of an oil flow visualization photograph. Separation pattern (owl face of 
the second kind) on the lee side of a hemisphere cylinder at incidence. (Photogreph provided by 
H.  Bippes 1985). 

stage of the mechanism, droplets being formed on the surface with a density that 
increases with T / r ,  where T is the wall shear stress and r is the surface tension 
between the liquid and the air. In  the expectation that the instability of the 
liquid-air interface is the important element in the first stage of line formation, our 
aim is to  determine the existence and features of this instability theoretically and 
experimentally. 

The formation of lines clearly involves more complex three-dimensional and 
nonlinear processes than can be accounted for by the two-dimensional linear stability 
analysis presented here. We must emphasize that the problem tackled here, while 
being motivated by the line formation problem, accounts only for the initial stage of 
the formation of transverse waves. 

Of the previous work on this subject, that  of Craik (1966) is the most important. 
Craik considered the transverse waves generated in a liquid film wetting one wall of 
a turbulent channel flow of air. He determined the stability boundaries of the film 
surface in a theoretical analysis and compared these with his experiments on 
relatively thick films in the context of the oil flow visualization case. The mechanism 
of the instability observed by Craik was that the pressure in phase with the wave 
elevation and the tangential stress in phase with the wave slope act to destabilize the 
wave while surface tension and gravity stabilize it. The mechanism is the same in our 
case, with the exception that we consider much thinner films in which gravity plays 
no part. As has been observed by Craik, such thin films are unstable a t  all air-stream 
speeds. In the current paper we accordingly address the most strongly amplified 
wavenumber rather than the stability boundaries. Because the dimensionless 
parameters of our problem are considerably different from those of Craik, i t  is 
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necessary to relax some of the assumptions made by him. For example, the 
assumption that the streamwise derivatives may be neglected relative to the wall- 
normal derivatives is not justifiable for the short wavelengths that occur in our 
problem. 

In order to  compare the predicted most strongly amplified wavenumber with 
experiment, it is necessary to  set up an experiment in which the flow is impulsively 
started and to observe the temporal development of the waves. The main interest 
here is in the flow over a flat plate with a laminar air boundary layer. 

H. B. Squire (1953) also investigated a related phenomenon, the antisymmetric 
transverse waves that grow on a thin liquid sheet flowing into still air. While our 
analysis follows very similar lines to that of Squire, the results are considerably 
different because of the different boundary conditions. In particular, the wave- 
numbers of the antisymmetric waves predicted by Squire, which are in good 
agreement with experiment, are much smaller than those observed in wall flows. 

2. Theory 
2.1. Problem definition and method of solution 

We shall examine whether the flow occurring in surface oil flow visualization, i.e. that 
of the liquid film and the air, can become unstable in such a manner that shallow, 
wave-like disturbances of the liquid surface grow with time. The dependence of the 
amplification of these waves on the wavelength and thus the most strongly amplified 
wavelength will be determined. Waves that have approximately this wavelength 
should be observable. 

A wave-like disturbance of the liquid surface is assumed to be present. Since the 
motion of the liquid is very slow compared with that of the air, the air flow is virtually 
stationary and may be calculated by considering this wave-like disturbance as being 
rigid and at  rest. In a second step the liquid flow is calculated. The external forces 
driving the liquid flow are the pressure and shear-stress distributions obtained in the 
air flow calculations and the surface tension between the liquid and air. The solution 
of this problem yields the amplification or damping of the assumed wave and its 
wavespeed. 

We first apply this method to laminar air boundary layers and then give an 
approximate result for turbulent boundary layers. The flow is assumed to be two- 
dimensional throughout. 

2.2. Calculation of the air $ow 
Consider a wall that is covered with a layer of liquid of constant thickness h. The air 
flows over this film with a laminar boundary layer of thickness 6. We neglect the 
unusually small streamwise gradients of undisturbed velocity outside the boundary 
layer, of the boundary-layer thickness and of its velocity profile. 

The assumed initial disturbance is shown in figure 2. The amplitude s of this wave 
is assumed to  be small compared with h and with the wavelength. The x-axis of the 
rectangular coordinate system is chosen to coincide with the undisturbed liquid 
surface. 

We seek solutions in which the stream function $ of the disturbance flow caused 
by the waviness of the wall takes the form 

8 

(1) 
FLM 200 
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Boundary-layer profile 
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FIGURE 2. Defining sketch. 

Linearizing the Navier-Stokes equations and eliminating the pressure, we obtain the 
following differential equation for $ : 

i v  
U$N-a2uQ)-v$ = - - ( a 4 $ - 2 a 2 $ ” + y ) ,  a (2 )  

where U(y) is the velocity profile of the undisturbed boundary layer, a is the 
disturbance wavenumber (2/rcA), v is the kinematic viscosity of the air and the prime 
denotes differentiation with respect to the independent variable. Equation (2) is the 
well-known On-Sommerfeld equation for the case where the wave velocity is zero. 
Note, however, that the origin of the y-coordinate is a t  the mean position of the 
liquid-air interface, so that the boundary conditions must be correspondingly 
formulated. 

We introduce the dimensionless variables 

Substituting these in (2) and separating real and imaginary parts we obtain the 
following coupled pair of fourth-order differential equations for the functions A and 

(4) 

B :  
- gB” + g“B + a: gB = (a* Re)-’ (a: A - 2.: A“ +A””), 

gA”--“A -.“,A = (a,Re)-l (a4,B-2a:B”+P). 

The boundary conditions require that the x- and y-components of the velocity (u and 
v) vanish a t  the liquid surface and that the disturbance velocity approaches zero as 
y + w .  

I 
Let the value of y a t  the liquid-air interface be given by 

yW = (s/6)eic, ( 5 )  

so that, in the linearized approximation, the following boundary conditions result a t  
r = o :  

1 A(0)  = 0, B(0) = 0, 
A’(0) = - g ’ ( O ) ,  B’(0) = 0. 
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The finite value of A'(0) results from the fact that the velocity profile of the 
undisturbed flow would have a finite x-component at the liquid surface. This has to 
be compensated by the disturbance flow. In the linearized approximation this 
compensation can be achieved by specifying the appropriate condition not a t  the 
liquid surface but a t  7 5 0. 

The boundary condition at 7 = 1 is obtained as follows. For 7 > 1, g = 1, and (4) 
then have inviscid solutions of the form e(a*'') and e(-"*q). Only the second provides the 
desired asymptotic behaviour as 7 + co . The viscous solution can be omitted as usual. 
Therefore the following boundary conditions must be satisfied : 

1 A'(1) = -a*A(l) ,  B'(1) = -a*B( l ) ,  
A"(1) = -a*A'( l ) ,  B"(1) = -a*B'(l). 

(7) 

Equations (6) and (7) provide eight boundary conditions for the two linear fourth- 
order differential equations (4). By solving these numerically we obtain the desired 
disturbance flow, in the linear approximation. In particular, 

A"(0) + iB"(0) 
gives the additional shear stress caused by the waviness of the liquid-air interface, 
and 

A"'(0) + W ( 0 )  

gives the additional x-component of the pressure gradient. For the calculation of the 
liquid flow, only these two quantities are required from the air flow calculation. Since 
they are complex, both the shear stress and the pressure gradient are phase-shifted 
relative to the liquid surface. 

2.3. Calculation of the liquid Jlow 
We now consider the liquid flow, where the (Newtonian) liquid covers the wall with 
uniform thickness h, modulated by a differentially small waviness as in the previous 
section. The following external forces act on the liquid : the constant shear stress of 
the undisturbed air boundary-layer flow ; the shear-stress and pressure-gradient 
forces exerted by the air as calculated by the procedure of the previous section ; and 
the surface-tension forces which occur because of the curvature of the liquid sur- 
face and can be considered in the form of an additional pressure applied at the 
surface. 

For a sufficiently viscous liquid and sufficiently small film thickness, both the 
convective and unsteady inertia terms may be neglected in the equations of motion. 
Introducing a stream function II. and eliminating the pressure, we obtain the 
following differential equation for I) : 

V@ = 0. (8) 

This linear differential equation is independent of time, i.e. this flow is also quasi- 
steady. We may therefore solve for the flows caused by the various external forces 
separately and superpose the results. 

The flow corresponding to the constant shear stress r due to the undisturbed air 
flow is trivial; it is just a linear velocity profile. For the wave-like disturbances we 
can make the following separation ansatz 

(9) 
w-2 
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Substitution in (8) yields the differential equation 
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which may be solved analytically since it has the four fundamental solutions 

sinhay; coshay; ysinhay; ycoshay. 

The boundary condition a t  the solid wall requires vanishing velocity, i.e. 

A t  the liquid-air interface the boundary conditions may be satisfied in the linear 
approximation a t  the undisturbed interface location y = h. We have 

p[@”(O) - a2$(0)] eias = T ,  

. aP p[+”(O) - a2$’(0)] elaz = - ax’ 
where p is the viscosity of the liquid, r is the shear stress determined in the air flow 
problem, and ap/ax is the pressure gradient determined in the air flow problem plus 
the additional pressure gradient caused by the surface tension CT at the liquid-air 
interface in conjunction with the interface curvature. 

We introduce the dimensionless quantities 

h u . ss 
h*=cF’ =*=- PUm’ s* = __ SUF’ 

where U, = g‘(0) hpvU,/(pUS) is the undisturbed interface speed, p is the air density and 
i = ia$(O) is the y-component of the disturbance velocity of the wave crest. 

By following the procedure above, we obtain 

in which we have used the abbreviations 

, (15) 
tanh2 z ij[tanh z( I + z tanh z )  - z ]  

23 
f7 = 7 7 f p  = 

where z = a, h, = ah. 
The functions f7 and fp tend to 1 as z+O, i.e. as the ratio of film thickness to 

wavelength goes to zero. They provide the influence of the finite film thickness, which 
manifests itself in a departure of the velocity profile from the linear or parabolic 
form, caused by the shear stress and pressure disturbances.? We recognize further 
that the disturbance stream function of the air flow enters into (14) only in the form 
of the second and third derivatives of the imaginary part a t  r,~ = 0 ; i.e. only those 
parts of the shear stress and pressure disturbances that are phase shifted relative to 
the surface wave by $x enter the amplification rate. The two other, in-phase parts 

t Note that, though Craik’s analysis starts from the Orr-Sommerfeld equation, his subsequent 
assumptions reduce the problem effectively to Yyyva! = 0. This corresponds tof, =f, = 1 ,  which is, 
however, not admissible even in the case of our thinner films. 
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cause an increase of the surface wave speed over the material speed of the 
undisturbed surface (i.e. over UF), which will not be further considered here. 

We now have all the relations needed to determine the amplification or damping 
rate of a disturbance of given wavelength, for a given boundary layer and liquid 
layer. 

2.4. Simpli$ed representation of the results 

If 8, is determined from the above relations it is obtained as a function of the 
following quantities : 

By varying the wavenumber a* one obtains the special wavenumber a,, for which 
8, reaches a maximum: 

4, = ma*> h*,Re, a*, g(7)). (16) 

a*, = G(h*,Re, g(7)). (17) 

This is the wavenumber that should be observable in an experiment. 
For large wavenumbers a* the disturbance decays rapidly with increasing y in the 

air flow, i.e. the important part of the disturbance motion occurs in a thin sublayer 
of the boundary layer. In  that case only the linear portion of the laminar-boundary- 
layer velocity profile is important and the quantities v/u, and u, are likely to prove 
more suitable scaling parameters than 6 and U,. (Here u, = ( ~ / p ) i  is the friction 
velocity.) Accordingly we introduce new dimensionless variables 

Under the circumstances assumed here, any further influence of Re and g(7) may be 
expected to become negligible so that the functional forms 

8, = ma,, h,, a+), a+, = w+, a,) (19) 

approximately account for the variables affecting the quantities of interest. 
Both for the presentation of the results and for the reduction of numerical effort 

the step from (17) to (19) would give considerable advantages. Whether or not it is 
justified has to be left to example calculations. 

2.5. Numerical computation 
For the numerical computation we consider the laminar flat-plate boundary layer. 
According to the arguments presented in the previous section, the results should 
apply approximately also to other boundary layers. To simplify the computation we 
replace the Blasius profile by the approximate Pohlhausen profile 

(20) 

For a given value of a* we then solve (4) with the boundary conditions (6) and (7). 
This is done by a numerical computation of one solution that satisfies the boundary 
conditions a t  7 = 0 and four further, linearly independent solutions that satisfy the 
corresponding homogeneous boundary conditions. These may be combined linearly in 
such a way as to satisfy the boundary conditions at 7 = 1. For larger Reynolds 
numbers, and especially for the case of the turbulent boundary layer treated below, 
difficulties may arise because of precision limits. However, these can be avoided 

g(7) = 27 - 273 + 74. 
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FIGURE 3. Dimensionless amplification rate as a function of dimensionless wavenumber and 
dimensionless surface tension. Evaluated for Re = 2000, h, = 31.62, laminar flat-plate boundary 
layer. 

easily by continuing the exponential decay solution (valid at 7 > 1) to values of 
7 < 1 with the aid of the inviscid equations and matching it at a point below 7 = 1. 

This calculation yields the quantities B”(0) and B”(0) necessary for the 
determination of the amplification rate 8 ,  from (14). 

Starting with a given boundary layer and liquid layer (i.e. fixed g(v),Re, h,, u,) 
and varying a,, one obtains 8 ,  as a function of a,, a curve with a pronounced 
maximum in the region of positive values of 8,.  Computations of this kind were 
performed for a Pohfhausen flat-plate profile at Re = U,S/v = 2000 for a range of 
values of h, and u, and transformed into the variables a+, h+ and u+ for the reasons 
given in $2.4. Examples of the resulting curves are plotted in figure 3. From such 
curves the OL+, values, i.e. the values at which 8+ reaches a maximum, may be 
determined. They are plotted against c+ for various values of h, in figure 4. The 
wavelength of the most strongly amplified disturbance may be obtained directly 
from this graph for a given liquid layer and a given boundary layer. 

In addition, one of these curves has been recalculated for Re = lo00 at otherwise 
equal conditions. This curve is also plotted in figure 4. It shows that the (additional) 
influence of Re is indeed small, as assumed. The range 1000 < Re < 2000 covers the 
range of interest below transition. 

2.6. Turbulent boundary layer 
The results of the previous sections for laminar boundary layers show that, especially 
for small wavelengths, the flow disturbance is restricted mainly to the near-wall 
region of the boundary layer, where the velocity profile is linear. In a turbulent 
boundary layer there also exists a thin viscous sublayer in which momentum 
exchange occurs only owing to the molecular viscosity of the air and not through 
turbulent mixing. For sufficiently small wavelengths which cause disturbance flows 
that decay over the viscous sublayer thickness, the same relations must therefore 
apply as for the laminar boundary layer, if the dimensionless quantities of $2.4 are 
used. 
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FIQURE 4. Most strongly amplified wavenumber with a laminar flat-plate boundary layer. 
Experimental results are shown as circles. The points attached to the circles by lines indicate the 
positions where the circles should be for agreement with the theory according to the value of h, 
determined from experiment. -, Re = 2000 ; - - -, Re = 1OOO. 

A considerably better approximation, valid up to larger wavelengths, is obtained 
by computing the flow as in the laminar case, but with an empirical boundary-layer 
mean velocity profile. Since only the near-wall region is of interest, it is appropriate 
to use the universal law of the wall. This neglects the effect of the Reynolds stress on 
the disturbance flow, but retains to first order the correct influence of the main flow 
velocity on the disturbance pressure. 

The physical reason for the fact that this approach yields a considerably better 
approximation is that in the disturbance motion, just as in laminar stability theory, 
there exists a near-wall layer in which viscous forces are important, while they may 
be neglected elsewhere. Our approximation should therefore be valid as long as this 
sublayer is thinner than the viscous sublayer. The formation of the 'disturbance 
sublayer ' is more easily understood by observing that the waviness of the wall 
generates a pressure that fluctuates in the x-direction and whose amplitude is largest 
at the wall. However, it is just at  the wall where longitudinal motions are brought 
to rest by viscous forces. 

Figure 5 shows the so-computed dimensionless wavenumber of maximum 
amplification rate, a,, plotted against CT+ for various values of h,. It may be seen 
that much smaller wavenumbers result than in the case of the laminar boundary 
layer. 

Of course, the calculation could be improved further by introducing an eddy 
viscosity, but the results would then depend on somewhat arbitrary assumptions 
about the eddy viscosity. 
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3. Experiment 
3.1. Design of the experiment, experimental set-up and technique 

In order to examine the occurrence and features of surface waves in an experiment, 
it  is necessary to be able to start the flow in a time that is sufficiently short compared 
with the establishment time of the waves. Since the high-speed wind tunnel HKG a t  
the DFVLR-AVA Gottingen, a ‘suck-down ’ facility operating between the 
atmosphere and a large vacuum tank, is started with a fast valve downstream of the 
test section, i t  is ideal for our purpose. Normally this facility is operated in the Mach- 
number range 0.4 < M < 2.5 and the range of present interest is 0 < M < 0.25. For 
this reason wooden blocks were added to  the jaws of the adjustable sonic throat 
which is located between the test section and the valve, so that the desired low speed 
could easily be regulated to conditions that remained const,ant over a test period of 
approximately 45 s. 

For subsonic operation the tunnel has an open test section 75 cm x 75 cm in cross- 
section within a large tank sealing it from the laboratory. Within the test section a 
flat plate made of aluminium was mounted on a sting fixed to the trailing edge of the 
plate and mounted on the remotely adjustable incidence gear. The plate’s streamwise 
extent is 50 cm and its width 40 cm. Normally a flat plate at zero incidence in 
subsonic flow should have a slender rounded leading edge to avoid leading-edge 
separation, transition or other disturbances. I n  our case i t  was necessary to cover the 
plate with the viscous liquid (oil) and to let this come to rest over some time so that 
it reached a uniform thickness. Hence, it seemed desirable for the plate to have a 
horizontal top surface and, therefore, an asymmetrical sharpened leading edge. 
Leading-edge separation could then be avoided by quickly giving the plate a suitable 
degree of negative incidence just before the flow was started. While this alters the 
state of the boundary layer from that of a zero-incidence layer, the incidence needed 
was only 10’ and the effect is slight. 

In  order to visualize surface disturbances of small amplitude, the following 
technique was used. A vertical wall parallel to the tunnel axis was rigged up along 
the edge of the open-jet test section, with a white surface facing the flow, On this 
white surface, 2.5 cm broad strips of dark adhesive tape were attached at a spacing 
of about 5 cm, so that a coarse pattern of alternating dark and white stripes resulted. 

F l Q U R E  5. Most strongly amplified wavenumber witsh a turbulent boundary layer. 
For notation of experimental symbols see caption of figure 4. 
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On the other side of the open jet (opposite the wall with the striped pattern) a camera 
was rigged up to photograph the reflection of the pattern in the smooth oil surface 
acting as a mirror. As soon as the surface becomes disturbed, the reflection becomes 
disturbed, and this becomes visible in the picture. Of course, the method is the more 
sensitive the larger is the distance between pattern and mirror, and it is also most 
sensitive along the dark-white edges of the image in the surface. Some adjustments 
were necessary to optimize these parameters. It turns out that a t  the conditions of 
our experiment, it is better to focus the camera on the surface rather than on the 
stripe pattern, though the stripe pattern is still resolved quite well. 

The camera was set to take pictures a t  a fixed rate up to two frames per s during 
each run and the plate was illuminated with an electronic flash synchronized with the 
shutter. An example of the results is presented in figure 6 showing a sequence of 
photographs from tunnel start to conditions during the run with well-established 
wave patterns for a flow speed of 36 m/s. These will be discussed in more detail in the 
next section. 

The procedure of the experiment was as follows. The plate was first adjusted to the 
horizontal. A measured quantity of oil was poured onto the plate and allowed to 
spread. The sharp edges of the plate prevented any spilling. The film thickness was 
measured a t  various points with a micrometer. A typical value of the film thickness 
was 0.15 mm. While the average thickness was well controllable by measuring the 
volume of oil, the spatial variation before the shot was as much as & 10%. The 
tunnel was then closed, and the incidence adjusted. Immediately thereafter the 
camera and tunnel were started. The time between incidence adjustment and tunnel 
start was approximately 1 s. No motion of the liquid film under gravity could be 
detected in the photographs during this time. The surface tension of the oil, 
measured by a capillary technique, was 0.02 N/m and its viscosity was 2.9 g/(cm s). 

In order to evaluate the results, a centimeter grid was placed on the plate and 
photographed with the plate and camera in the same condition as during the run. 
Overlaying this on the photographs facilitates the measurement of the wavenumber 
of the observed waves because it deconvolutes the perspective distortion by 
providing an equally distorted grid. 

3.2. Experimental results 
In  this section we present the experimental results in the form of the photographs 
obtained, and briefly discuss their qualitative features. The quantitative evaluation 
and comparison with theory is left to $4. 

The first example, with a laminar air boundary layer has already been introduced 
with the sequence of 5 photographs of figure 6 a t  a free-stream speed of 36 m/s. The 
first frame shown, (figure 6 a ) ,  is taken just after tunnel start. The second frame 
shown (figure 6 b ) ,  taken 10 s after tunnel start shows two interesting features. First, 
oblique waves appear near the leading edge which show great regularity and occur 
at an angle very close to 45" from the flow direction. These, in fact, already appear 
on the first frame, taken less than a second after tunnel start. Secondly, the 
beginnings of waves of a larger wavelength appear a t  the edges of the images of the 
dark stripes further downstream. The third frame shown (figure 6c), was taken a t  
14 s after tunnel start and shows that the second group of waves has been amplified 
further while the oblique waves have remained of much the same amplitude. The 
fourth and fifth frames (figures 6d and 6e) ,  taken at 18 and 24 s show a continuation 
of this trend. 

The second group of waves, which appear later and are amplified more strongly, 
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FIGURE S(a-c). For caption see facing page. 
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FIGURE 6. Photographs of the surface during the run at U, = 36 m/s. Flow from left to right. the 
plate is shown in perspective distortion. It is covered with oil and reflects a pattern of broad strips 
of dark adhesive tape on a vertical wall behind the flow to amplify the visualization of surface 
waves. A rectangular grid inscribed on the wall is also seen in the reflection. (a) Jus t  after tunnel 
start. ( b )  10s after tunnel start. Note oblique waves near the leading edge and beginnings of 
transverse waves a t  the edges of the images of the dark strips on the left half of the plate. (c )  
14 s after tunnel start. Transverse waves have grown in amplitude. (d )  18 s and ( e )  24 Y after tunnel 
start. Note continued amplification of transverse waves. 

occur virtually in a transverse direction to the flow. These we interpret to be the 
waves predicted by the theory. Interpretations of the other group, the oblique regular 
waves appearing earlier and not being amplified as strongly, can only be speculative. 

As a second example we show in figure 7 a single frame taken 2 s after tunnel start 
a t  a flow speed of 69 m/s, a t  which the boundary layer is laminar near the leading 
edge, turbulent near the t,railing edge, and transitional over most of the length. This 
may easily be recognized by the long turbulent wedges, between which, i.e. in the 
laminar portions, the features of figure 6 are generally repeated on a smaller 
wavelength scale. Also, the waves in the turbulent portions, both within the 
turbulent wedges and where these have grown together downstream, have quite 
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FIGURE 7. Flow speed = 69 m/s, 2 s after tunnel start. Transitional flow. Note turbulence wedges 
and laminar flow behaviour between them. Also note turbulent behaviour far downstream where 
wedges have joined. 

different features. They are obviously far from being sinusoidal in shape, though a 
reasonably regular wavelength may be observed. 

At a slightly higher speed, 84 m/s, figures 8 ( a )  and 8 ( b )  show two frames taken at  
7 and 15 s respectively. These display clearly, that near the front an accumulation 
of material and a formation of longitudinal stripes has taken place. However, further 
downstream the typical transverse waves of turbulent flow still portray a fairly 
regular pattern. 

4. Comparison between theory and experiment, and discussion 
Measurements of the wavenumber of the observed waves were made a t  points 

where the waves are particularly clearly seen a t  different times and positions on the 
plate in the photographs obtained in 15 runs. These were then converted to the 
dimensionless variables a,, rs+ and h+ by using the wall shear stress according to  the 
correlations with theoretical flat-plate laminar boundary layer or the flat-plate 
turbulent boundary layer, for laminar and turbulent flow respectively. 

The resulting values are plotted in figures 4 and 5 in order to compare them with 
the theory. In  order to relate the measured points, drawn as circles, to the 
appropriate dimensionless layer thickness h, as obtained from measurements before 
the run, each circle is provided with a line and a point, the point being placed a t  the 
position where the circle would have to be for perfect agreement with the theory. 

Large uncertainties may be expected in the measurement of the dimensional 
wavelength (2 12 %), in the dimensional initial film thickness ( + 2 0  %), in the 
viscosity ( 3 %) and surface tension ( &- 10 %) of the oil, as well as in the assumption 
about flat-plate flow. If all of these are lumped together in an effective uncertainty 
in a+ an expected uncertainty of & 25 YO results. With the exception of one point, the 
laminar flow results lie within the margin. 

The discrepancies are much larger in the case of the turbulent boundary layer. This 
is not unexpected, since the assumptions of the theory are relatively crude, the waves 
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FIQURE 8. Flow speed = 84 m/s. (a) 7 s ,  ( b )  15 s after tunnel start. Note accumulation of material 
near leading edge, longitudinal structure developing thereafter and transverse waves of turbulent 
flow further downstream. 

are certainly neither sinusoidal nor of small amplitude, and the film thickness has 
probably been significantly increased over that prevailing before the run. 

From this comparison we regard the theory as providing a quantitative description 
of the instability of a liquid film under a laminar boundary layer, and a t  least a 
qualitative one for the case of a turbulent boundary layer. 

Comparing figure 4 with figure 5 i t  may be seen that for given h, and (T, the theory 
gives considerably higher values of a,, for laminar than for turbulent boundary 
layers. This is also confirmed by the experiments. The transition from laminar to 
turbulent boundary-layer flow, which occurs fairly sharply with change of the flow 
parameters, also brings with i t  a fairly sharp change of u,. Hence, the parameters 
h,, u+ and a+, also change quite suddenly a t  transition. The nature of these changes 
is such that transition causes a significant reduction of the wavenumber a, as is also 
confirmed by the experiments. 

The formation of transverse waves is only the first stage of the formation of the 
lines seen in the method of surface oil flow visualization. From observations and 
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FIGURE 9. Surface oil flow visualization photograph on the pressure side of a delta wing at a free- 
stream Mach number of 1.22 and 7" incidence. Kote the transverse oblique fine structure within the 
coarser regular streamwise lines. 

conjecture it is expected that in a later stage the wave crests themselves display a 
transverse instability governed by surface tension, similar to the well-known 
instability of a cylinder of liquid a t  rest under the influence of surface tension. 
Evidently the pressure forces of the boundary-layer flow amplify this effect. At a 
later stage this leads to the formation of drops. The drops then move faster than 
surrounding liquid and thus clear paths that remain visible as the observed lines. 

The linear theory is not able to describe these effects, of course. However, it does 
show that no single length governs the observed wavelength, each of h, v /u ,  and 
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cT/r taking a dominant role in different regimes. It must be expected, therefore, that 
the line spacing, which may be assumed to be governed essentially by the 
wavelength, will likewise not be controlled by any single one of these characteristic 
lengths. 

It is possible that the regular transverse structures sometimes observed in 
compressible-flow visualization as a finer structure superimposed on a longitudinal 
line structure are a residue of the original transverse waves, see figure 9. The 
observed longitudinal length parameter should then coincide with the wavelength 
discussed before. However, though this can be explained by a physical argument, it 
has so far not been substantiated experimentally or theoretically. 
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